skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "You, Mingxu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Versatile DNA nanodevices that modulate membrane receptor aggregation and reprogram cell signaling with high precision and programmability. 
    more » « less
  2. Cells continuously experience and respond to different physical forces that are used to regulate their physiology and functions. Our ability to measure these mechanical cues is essential for understanding the bases of various mechanosensing and mechanotransduction processes. While multiple strategies have been developed to study mechanical forces within two-dimensional (2D) cell culture monolayers, the force measurement at cell-cell junctions in real three-dimensional (3D) cell models is still pretty rare. Considering that in real biological systems, cells are exposed to forces from 3D directions, measuring these molecular forces in their native environment is thus highly critical for the better understanding of different development and disease processes. We have recently developed a type of DNA-based molecular probe for measuring intercellular tensile forces in 2D cell models. Herein, we will report the further development and first-time usage of these molecular tension probes to visualize and detect mechanical forces within 3D spheroids and embryoid bodies (EBs). These probes can spontaneously anchor onto live cell membranes via the attached lipid moieties. By varying the concentrations of these DNA probes and their incubation time, we have first characterized the kinetics and efficiency of probe penetration and loading onto tumor spheroids and stem cell EBs of different sizes. After optimization, we have further imaged and measured E-cadherin-mediated forces in these 3D spheroids and EBs for the first time. Our results indicated that these DNA-based molecular tension probes can be used to study the spatiotemporal distributions of target mechanotransduction processes. These powerful imaging tools may be potentially applied to fill the gap between ongoing research of biomechanics in 2D systems and that in real 3D cell complexes. 
    more » « less
  3. Abstract Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid–liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes and densities of these cellular RNA condensates. The cis- and trans-regulation functions of these CAG-repeat tags in cellular RNA localization, life time, RNA–protein interactions and gene expression have also been investigated. Considering the importance of RNA condensation in health and disease, we expect that these genetically encodable modular and self-assembled tags can be widely used for chemical biology and synthetic biology studies. 
    more » « less
  4. null (Ed.)
  5. Nucleic acid-based nanodevices have been widely used in the fields of biosensing and nanomedicine. Traditionally, the majority of these nanodevices were first constructed in vitro using synthetic DNA or RNA oligonucleotides and then delivered into cells. Nowadays, the emergence of genetically encoded RNA nanodevices has provided a promising alternative approach for intracellular analysis and regulation. These genetically encoded RNA-based nanodevices can be directly transcribed and continuously produced inside living cells. A variety of highly precise and programmable nanodevices have been constructed in this way during the last decade. In this review, we will summarize the recent advances in the design and function of these artificial genetically encoded RNA nanodevices. In particular, we will focus on their applications in regulating cellular gene expression, imaging, logic operation, structural biology, and optogenetics. We believe these versatile RNA-based nanodevices will be broadly used in the near future to probe and program cells and other biological systems. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Sensors based on fluorogenic RNA aptamers have emerged in recent years. These sensors have been used for in vitro and intracellular detection of a broad range of biological and medical targets. However, the potential application of fluorogenic RNA-based sensors for point-of-care testing is still little studied. Here, we report a paper substrate-based portable fluorogenic RNA sensor system. Target detection can be simply performed by rehydration of RNA sensor-embedded filter papers. This affordable sensor system can be used for the selective, sensitive, and rapid detection of different target analytes, such as antibiotics and cellular signaling molecules. We believe that these paper-based fluorogenic RNA sensors show great potential for point-of-care testing of a wide range of targets from small molecules, nucleic acids, proteins, to various pathogens. 
    more » « less
  8. Cells are physically contacting with each other. Direct and precise quantification of forces at cell–cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces. These lipid-modified DNAMeters can spontaneously anchor onto live cell membranes. The DNAMeter consists of two self-assembled DNA hairpins of different force tolerance. Once the intercellular tension exceeds the force tolerance to unfold a DNA hairpin, a specific fluorescence signal will be activated, which enables the real-time imaging and quantification of tensile forces. Using E-cadherin-modified DNAMeter as an example, we have demonstrated an approach to quantify, at the molecular level, the magnitude and distribution of E-cadherin tension among epithelial cells. Compatible with readily accessible fluorescence microscopes, these easy-to-use DNA tension probes can be broadly used to quantify mechanotransduction in collective cell behaviors. 
    more » « less
  9. null (Ed.)